

Trusted Computations in Vehicular Environments

Marc Lacoste

Orange Innovation

Journées Sécurité, October 14-15, 2021

Outline

- (Beyond) 5G vehicular isolation & trust
- The TEE approach
- TEE architectures
 - Intel SGX and other TEEs
 - Isolation and resilience framework for V2X
- New directions
 - Confidential computing
 - Decentralized protocols
 - Integration with ML

connected & autonomous vehicles: security, safety & privacy concerns

increasing complexity

B5G vehicular networking magnifies security & safety challenges

B5G vehicular networking magnifies security & safety challenges

isolation : which place for protection mechanisms in a multi-tier ecosystem?

- network connections
- multi-tenancy
- system-to-network, end-to-end

how to guarantee data protection?

- confidentiality and privacy
- authenticity and integrity of information sources
- relation with safety

a holistic vision of protection is needed:

- software and hardware
- for vehicle, network, and cloud tiers
- covering the full data life-cycle

B5G vehicular networking magnifies security & safety challenges

isolation : which place for protection mechanisms in a multi-tier ecosystem?

- network connections
- multi-tenancy
- system-to-network, end-to-end

how to guarantee data protection?

- confidentiality and privacy
- authenticity and integrity of information sources
- relation with safety

a holistic vision of protection is needed:

- software and hardware
- for vehicle, network, and cloud tiers
- covering the full data life-cycle

problem statement revisited

(Beyond) 5G infrastructures are virtualized, multi-domain and multi-layered, with many threats

problem statement revisited

(Beyond) 5G infrastructures are virtualized, multi-domain and multi-layered, with many threats

problem statement revisited

(Beyond) 5G infrastructures are virtualized, multi-domain and multi-layered, with many threats

how to perform (distributed) computations securely over untrusted B5G vehicular infrastructures?

security properties and primitives

PROTECTING THE INFRASTRUCTURE

Attestation Framework

Isolation **Framework**

Program Sandboxing

Confine untrusted programs Protect system from their actions

Platform Attestation Guarantee that the platform runs trustworthy hardware, firmware, and software before transferring computation and data

PROTECTING COMPUTATIONS

Isolated **Execution** Protect code from the rest of the system

Isolated compartments

- **❖ CREATE / DESTROY**
- **❖ ENTER / EXIT**

Confidentiality:

- "Black box" execution of programs
- Secure communication of data with untrusted outside world

Secure load and store data

Secure LOAD / STORE

Privacy: Private Tamper-Evident EE

Integrity:

The system cannot affect the behavior of programs that run as on reference platform

Attestation Proof of correct execution

ATTEST / VERIFY

Shielded Execution

evolutions of in-vehicle architecture

in-vehicle HW architecture is increasingly virtualized, raising isolation concerns

Hardware ECUs

Source: Wasicek et al. Context-aware Intrusion Detection in Automotive Control Systems. ESCAR Conference, 2017.

- Safety-critical vehicle functions connected by vulnerable HW bus
- Cyber-resilience: propagation of failures and attacks through vulnerable gateway
- Challenges:
 - ECU protection
 - In-vehicle network protection
 - Gateway protection

Domain-based ECUs

Source: NXP.

- ECUs grouped into domains for broad functional areas
- ECU domains isolated / monitored by Domain Controllers
- Challenges:
 - Inter-domain isolation
 - Trade-offs

Virtualized ECUs

Source: NXP.

- ECUs as virtualized execution environments (e.g., VMs, containers)
- Distributed computations across ECUs / vehicles
- Challenges:
 - EE isolation
 - Untrusted EE platform
 - Side-channels

⇒ hardware trusted execution execution technologies

Outline

- (Beyond) 5G vehicular isolation & trust
- The TEE approach
- TEE architectures
 - Intel SGX and other TEEs
 - Isolation and resilience framework for V2X
- New directions
 - Confidential computing
 - Decentralized protocols
 - Integration with ML

Trusted Execution Environment

hardware support to run arbitrary code in a confined environment : guarantees tamper-resistant execution of applications

- isolated execution
- tamper-resistant storage: sealing create, store, and manage secrets in a controlled environment
- reporting to a remote verifier: attestation extend trust to internal and external entities

- secure provisioning
- trusted path

Trusted Platform Modules

Intel Software Guard Extensions

TEE guarantees isolation + trust

Isolation

protected compartment concept

Source: Jens Köhler and Henry Förster. Trusted Execution Environments in Vehicles for Secure Driver Assistance Systems, 2017, Springer.

Trust

secure remote computation

- prove to remote party it is talking to software located in secure container hosted on trusted hardware
- attestation key
- endorsement certificate

- security-sensitive state (code + data) in TEE cannot be corrupted from outside of TEE
- trusted hardware protects integrity and confidentiality of computations
- multiple concurrent compartments

Source: V. Costan, I. Lebedev and S. Devadas. Secure Processors Part I: Background, Taxonomy for Secure Enclaves and Intel SGX Architecture. Foundations and Trends in Electronic Design Automation, vol. 11, no. 1-2, pp. 1–248, 2017.

TEE features

isolation

- access control to code and data
- well-defined entry point
- concurrent modules

attestation

- prove to third party attested state
- locally or remotely
- measurement during init

sealing

- confidential data
 can be unwrapped
 under some conditions
- encryption

Source: J. Köhler and H. Förster. Trusted execution environments in vehicles for secure driver assistance systems, 2017, Springer.

DRoT

- trust chains
- TOCTOU vulnerabilities
- code and data confidentiality
- side-channel resistance
- memory protection

TEE architecture

key challenges

isolation

- attack surface:
 - TCB size
 - hardware or software TCB?
 - side-channel attacks, exceptions
- flexibility:
 - dynamic/upgradeable protected space
 - concurrent compartments
 - compartment size limitations

attestation

- secure proofs
- large code size
- low overhead:
 - secure element resource usage
 - communication
 - proof verification

compatibility with legacy

- unmodified binaries support
- on-chip or co-processor?
- independence from hardware
- easy access to specifications
- amount of trust in provider

Source: https://semiengineering.com/dodging-the-next-generation-of-car-thieves/

Outline

- (Beyond) 5G vehicular isolation & trust
- The TEE approach
- TEE architectures
 - Intel SGX and other TEEs
 - Isolation and resilience framework for V2X
- New directions
 - Confidential computing
 - Decentralized protocols
 - Integration with ML

for V2X

HSM

- hardware module runs software components isolated from other software components
- SoC, external module, Integrated Circuit
- examples:
 - Secure Hardware Extension (SHE), EVITA HSM
 - TPM
 - Smart cards (eSIM)

CPU security extensions

- realms / enclaves isolated by the hardware
- examples:
 - Intel TXT
 - ARM Trustzone
 - Intel SGX

virtualization solutions

virtualization (full or lightweight) guarantees isolation examples: hypervisors (Xen, KVM) containers (LXC) unikernels Source: EVITA project

EVITA medium: secure CPU (aymmetric crypto)

for time-critical applications

Intel SGX

Enclave: secure run-time environment isolated from external access

Memory protection

- Only CPU is trusted
- Multi-threaded execution
- New hardware instructions
 - Enclave creation (ECREATE)
 - Adding pages (EADD), sealing
 - Enclave mode call gate (EENTER, EEXIT, ERESUME)
- Enclave Page Cache (EPC):
 Physical memory region to store pages, transparently encrypted, integrity–protected
- SGXv2:

Dynamic memory allocation, EPC permission change

Attestation

- CPU-based attestation:
 - On-demand generation of reports (EREPORT)
 - Verification of report integrity
- Quoting enclave for remote attestation

Verifies report integrity includes in CoT

ARM Trustzone, AMD SEV

Co-processor Secure World (TEE) Normal World (REE) DRAM user mode: user mode: App TEE App kernel mode: kernel mode: OS TEE-kernel hyp mode: Hypervisor APB smc smc monitor mode: Secure Monitor Mode Secure world Normal world

CPU Core

- partition of resources in two worlds:
 - Normal world
 - Secure World
- Secure Monitor between worlds

Source: Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu Zang, Haibing Guan. vTZ: Virtualizing ARM TrustZone, *USENIX Security Symposium*, 2017.

encryption of VM memory image confidentiality but not integrity protection

AMD SEV

ARM TrustZone

comparisons

									ancel								.3	ility	
	150	olatio At	n testat	ion aling	nami	ic Ro	de Memor	alityesist el Protect cy Protect	ion	intwi	ight Proce	essor N-On Pri	ly To	B tion nami	e Layout Bradeabl	e TCB Corr	iPati.	en-S	ource ademic 15A a Target 15A
AEGIS [46]	•	•	•	•	•	0	•		0	0	•	•	•	0	•		0	•	_
TPM [47] TXT [22]	0	•	•	0	•	-	0		0	•	•	-0	-	00	•		00	0	x86_64
TrustZone [1]	•	0	0	•	0	0	0		0	0	•	•	•	0	•		0	0	ARM
Bastion [9]	•	0	•	•	•	0	•		0	0	0	•	•	•	•		0	•	UltraSPARC
SMART [14]	0	•	0	•	0	0	0		•	0	0	_	-	0	•		0	•	AVR/MSP430
Sancus [39] Soteria [21]	•	•	00	•	0	00	0		•	0	•	00	0	00	0		•	•	MSP430 MSP430
SecureBlue++ [49]	•	0	•	•	•	0	•		0	0	•	•	•	0	•		0	0	POWER
SGX [35]	•	•	•	•	•	0	•		0	0	0	•	•	•	•		0	0	x86_64
Iso-X [15]	•	•	0	•	0	0	•		0	0	0	•	•	•	•		0	•	OpenRISC
TrustLite [28]	•	•	0	0	0	0	0		•	0	0	•	•	•	•		0	•	Siskiyou Peak
TyTAN [8]	•	•	•	•	0	0	0		•	0	0	•	•	•	•		0	•	Siskiyou Peak
Sanctum [12]	•	•	•	•	•	•	0		0	0	0	•	•	•	•		•	•	RISC-V

 $[\]bullet$ = Yes; \bullet = Partial; \bigcirc = No; \bullet = Not Applicable

Source: P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling and I. Verbauwhede. Hardware-Based Trusted Computing Architectures for Isolation and Attestation. *IEEE Transactions on Computers*, vol. 67, no. 3, pp. 361-374, March 2018.

¹Resistance against software side-channel attacks targeting memory access patterns only.

²Protection from physical attacks, both passive (e.g., probing) and active (e.g., fault injection).

comparisons

Source: J. Köhler and H. Förster. Trusted Execution Environments in Vehicles for Secure Driver Assistance Systems, 2017.

	Functionality												Security properties								Cost			
	Isolated execution of cryptographic operations	- Symmetric cryptography (SW)	- Asymmetric cryptography (SW)	- Symmetric cryptography (HW)	 Asymmetric cryptography (HW) 	Isolated support functionality	 RNG with secured entropy source 	- Monotonic counter	Isolated execution of arbitrary software	Isolated memory	Secure Boot	Authenticated Boot	Protection against physical attacks	- High degree of integration	- Side-channel attack resistance	- Hardware binding	Protection against non-physical attacks	- TCB realized in hardware	- TCB realized in hard- and software	- TCB realized in software	Relative financial cost	Prevalent design	Updateability of the software that is executed in the TEE	
Hardware Security Modules							.7	-					Marriel	3/1		300.00				20				
– SHE [4]				Х			X			(x)	X			Χ	(x)	Х		X			low	SoC / IC	none	
- EVITA light [5]				X			X		_	(x)	(x)	(x)		X	(x)	x		X	_		low	SoC / IC	none	
- EVITA medium [5]		X	X	X			X	X		Х	X	X		X	(x)	х		×			low	SoC / IC	(SW Update)	
– EVITA full [5]		Х	X	Х	х		X	Х		Х	Х	х		Х	(x)	х		X			medium	SoC / IC	(SW Update)	
– TPM 1.2 [6]				X	X		X	Х		X	х	X	8 - 8		(x)	(x)		×			high	EM	none	
– TPM 2.0 [7]	_	(x)	(x)	Х	х		Х	Х	_	х	х	×	_	_	(x)	(x)		×	_		high	EM	none	
- Smartcard [8]	_	(x)	(x)	_			X		_	Х		_		_	(x)	(x)		X			low	EM	(SW Update)	
CPU security extensions																								
- ARM TrustZone [9]		Х	X	(x)	(x)		Х	Х	Х	Х	Х	X		(x)	(x)	(x)	Т		Х	low-	SoC	(SW Update)		
- Intel TXT [10]	_	X	X	(x)	(x)		X	Х	X	Х	Х	х	_	(x)	(x)	(x)	_	_	Х		high	SoC	(SW Update)	
Virtualization solutions																								
- Hypervisor (e.g., Xen [11])		х	Х				(x)		Х	Х	(x)	(x)								Х	low-	Software	SW Update	
- Container (e.g., LXC [13])		X	X				(x)		X	х			_	_	_	_		_	_	X	high	Software	SW Update	

V2X isolation and resilience

- ECUs as virtualized execution environments
- distributed computations

goals: framework for isolation and resilience for next-generation critical vehicular functions (ECUs)

challenges:

- ECU isolation : trusted execution
- resilience : certificate-based anomaly detection
- side-channels : hardware performance counters
- interoperability : AUTOSAR framework

results:

- survey: vehicular isolation architecture, threats, mitigation
- isolation & resilience framework : FFIVR with PoC [VEHICULAR 2020]

FIIVIR: a Framework for Improving In-Vehicle Isolation and Resilience

Trusted Execution Environment (TEE)
secure isolated execution environments for FCUs

Monitoring and Certification Manager (MCM) real-time anomaly detection of in-vehicle network

Side Channel Attack Monitor run-time detection of side-channel attacks

Outline

- (Beyond) 5G vehicular isolation & trust
- The TEE approach
- TEE architectures
 - Intel SGX and other TEEs
 - Isolation and resilience framework for V2X
- New directions
 - Confidential computing
 - Decentralized protocols
 - Integration with ML

multi-dimensional heterogeneity challenges

Multiple distributed applications and security requirements

Multiple execution environments fragmented across platforms

Execution environments (EEs): transparency, security, interoperability limitations

Transparency

- Isolating enclave sensitive state
- Enclave size limitations

Security

Many side channel attacks

Side-channels mitigation orange for decentralized clouds

Interoperability

- Vendor lock-in
- OS functionality requirements

A non-uniform level of trust

Single-TEE industrial technologies

AMD SEV

arm **TRUSTZONE**

Have also security flaws

Multi-TEE "softwarized" technologies are highly promising

Lift hardware barriers

Microsoft

Enarx

OpenEnclave Asvlo

Extend also to the edge

Microsoft Graviton

Interoperability is still lacking but starting

legacy compatibility

Haven: private execution of unmodified binaries, mutual host-guest distrust

Sandboxing: host vs. malicious guest

- Pico-process: secure isolation container
- Drawbridge LibOS:
 - Narrow set of OS services
 - Virtual memory, threading, I/O
- Support unmodified Windows binaries

legacy compatibility

Haven: private execution of unmodified binaries, mutual host-guest distrust

Shielded execution: applications vs. from untrusted host

Contain untrusted host OS

- LibOS: reduce attack surface
- Shield: reduce interface
 - Validate untrusted inputs
 - Encrypt / integrity protect private data Private scheduler

Unmodified binary support

- **Exceptions:**
 - Emulate instruction behavior
 - Page faults exposed to host OS

co-processors

- TEE on GPUs: Graviton
- Confidentiality and integrity of computation and data
- Secure GPU/CPU interface

decentralized protection of data

Future large-scale distributed applications have multiple data protection challenges

Network of TEEs architectures combine strong local security with decentralized security

Some remaining challenges

- Guarantee security of coupling between TEE and protocol
- Reach flexibility in protection architecture

extending decentralized flexibility to privacy-preserving Artificial Intelligence

Apps perform distributed computations for automated predictions over private data

A rich landscape of hybrid solutions

Extend flexibility to integrate predictions

Beyond P2P solutions...

- Towards a <u>unified and open reference architecture</u> to orchestrate the different enablers
- The <u>open source approach</u> is promising to federate ecosystems

Some remaining challenges

- the previous heterogeneity challenges are magnified
- going towards a fully zero-trust model

conclusion

- Vehicular systems: acute security & safety challenges for distributed isolation & trust
- Trusted computing approaches: strong guarantees by shielding applications
- Some challenges ahead:
 - Distribution: Device, edge, cloud continuum Seamless mobility?
 - Composition of security technologies
 - Distributed/federated machine learning
 - Heterogeneous processor architectures
 - Latency requirements
 - Side-channels
 - Chains of Trust and certification

Thank you

Marc Lacoste
Orange Innovation
Senior Research Scientist
marc.lacoste@orange.com

