Algorithmes d'ordonnancement et schémas de résilience pour les pannes et les erreurs silencieuses

Aurélien Cavelan <aurelien.cavelan@unibas.ch>

ENS de Lyon et Inria, France

January 31, 2017

Top500 List

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
2	Tianhe-2 [MilkyWay-2] - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P , NUDT National Super Computer Center in Guangzhou China	3,120,000	33,862.7	54,902.4	17,808
3	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.66Hz, Aries interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	361,760	19,590.0	25,326.3	2,272
4	Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz , ExaScaler Japan Agency for Marine-Earth Science and Technology Japan	19,860,000	19,135.8	28,192.0	1,350
5	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x , Cray Inc. DOE/SC/Oak Ridge National Laboratory United States	560,640	17,590.0	27,112.5	8,209
6	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom , IBM DOE/NNSA/LLNL United States	1,572,864	17,173.2	20,132.7	7,890
7	Trinity - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect	979,968	14,137.3	43,902.6	3,844

Algorithmes d'ordonnancement et schémas de résilience pour les pannes et les erreurs silencieuses

I. Failures

II. Silent Errors

Algorithmes d'ordonnancement et schémas de résilience pour les pannes et les erreurs silencieuses

I. Failures

Consider one processor (e.g. in your laptop):

- > MTBF = 100 years
- > (Almost) no failures in practice ...

Theorem.

MTBF decreases linearly with the number of processors.

- > 36500 processors
 - MTBF = 1 day
 - > A failure every day on average!

Large simulations can execute for weeks at a time.

A petascale computer

- $> 400m^2$
- > 17.59 PetaFlops
- > 693.6 TiB of RAM

Titan has 37376 processors and GPUs and ≈ 1 day MTBF.

Algorithmes d'ordonnancement et schémas de résilience pour les pannes et les erreurs silencieuses

Failures proportional to number of processors

- 2013: **Preprodudcion** Blue Waters requires repairs ≈ 4 hours 2014: Titan (37, 376 processors) loses a node every ≈ 1.5 days
- 2015: Blue Waters (26,868 processors) loses ≈ 2 nodes per day

Characteristics

- Component failure (node, network, power, ...)
- Application fails and data is lost

An Inconvenient Truth

Top ranked supercomputers in the US (June 2017)

Rank	Name	Laboratory	Technology	Processors	PFlops/s	MTBF
5	Titan	ORNL	Cray XK7	37,376	17.59	pprox 1 day
6	Sequoia	LLNL	BG/Q	98,304	17.17	$pprox 1~{ m day}$
8	Cori	LBNL	Cray XC40	11,308	14.01	$pprox 1~{ m day}$
11	Mira	ANL	BG/Q	49,152	8.59	$pprox 1~{ m day}$

The first exascale computer (10^{18} FLOPS) is expected by 2020:

- > Larger processors count: millions of processors
- > MTBF is expected to drop dramatically
- > Down to **the hour** or even worse

Coping with failures:

- > Make applications more fault tolerant!
- > Design better resilience techniques!

An Inconvenient Truth

Top ranked supercomputers in the US (June 2017)

Rank	Name	Laboratory	Technology	Processors	PFlops/s	MTBF
5	Titan	ORNL	Cray XK7	37,376	17.59	pprox 1 day
6	Sequoia	LLNL	BG/Q	98,304	17.17	$pprox 1~{ m day}$
8	Cori	LBNL	Cray XC40	11,308	14.01	$pprox 1~{ m day}$
11	Mira	ANL	BG/Q	49,152	8.59	$pprox 1~{ m day}$

The first exascale computer (10^{18} FLOPS) is expected by 2020:

- > Larger processors count: millions of processors
- > MTBF is expected to drop dramatically
- > Down to **the hour** or even worse

Coping with failures:

- > Make applications more fault tolerant!
- > Design better resilience techniques!

Coping with Fail-Stop Errors

Periodic checkpoint, rollback, and recovery:

- > Coordinated checkpointing (the platform is a giant macro-processor)
- > Assume instantaneous interruption and detection.
- > Rollback to last checkpoint and re-execute.

Algorithmes d'ordonnancement et schémas de résilience pour les pannes et les erreurs silencieuses

Coping with Fail-Stop Errors

Periodic checkpoint, rollback, and recovery:

- > Coordinated checkpointing (the platform is a giant macro-processor)
- Assume instantaneous interruption and detection.

> Rollback to last checkpoint and re-execute.

Algorithmes d'ordonnancement et schémas de résilience pour les pannes et les erreurs silencieuses

Coping with Fail-Stop Errors

Periodic checkpoint, rollback, and recovery:

- > Coordinated checkpointing (the platform is a giant macro-processor)
- Assume instantaneous interruption and detection.
- Rollback to last checkpoint and re-execute.

Optimal Checkpoint Interval

Minimize Expected Execution Time

- > T: Pattern length
- > C: Checkpoint time
- > R: Recovery time

$$\mathbb{E}(T) = \mathbb{P}_{no-error} \cdot (T+C) +$$

Minimize Expected Execution Time

- > T: Pattern length
- > C: Checkpoint time
- > R: Recovery time

Optimization

- > Choose fault-model
- > Minimize $\mathbb{E}(T)$ for T

. . .

Theorem. [Young 1974, Daly 2006] $T^{opt}=\sqrt{2\mu C}$

- > C: checkpoint cost
- > μ (MTBF): Mean Time Between Failures

Extension: Multiple Levels of Checkpoints

Now, suppose that multiple types of checkpoints are available, e.g.

- > Parallel File System (PFS)
- > Local memory/SSD
- > Partner copy/XOR

We can use **synchronized** checkpointing:

Synchronized checkpointing

- > k levels of checkpoints
- > An error at level i kills all checkpoints $C_j < C_i$

Extension: Multiple Levels of Checkpoints

Now, suppose that multiple types of checkpoints are available, e.g.

- > Parallel File System (PFS)
- > Local memory/SSD
- > Partner copy/XOR

We can use **synchronized** checkpointing:

Synchronized checkpointing

- k levels of checkpoints
- An error at level i kills all checkpoints $C_j < C_i$

Theorem (single-level) [Young,Daly]:

Optimal pattern length: $T^{\text{opt}} = \sqrt{\frac{2C}{\lambda}}$

Theorem (multi-level):

 $\begin{array}{ll} \text{Optimal pattern length:} & T^{\text{opt}} & = \sqrt{\frac{\sum_{\ell=1}^{k} N_{\ell}^{\text{opt}} C_{\ell}}{\frac{1}{2} \sum_{\ell=1}^{k} \frac{\lambda_{\ell}}{N_{\ell}^{\text{opt}}}} } \\ \text{Optimal $\#$chkpts at level ℓ:} & N_{\ell}^{\text{opt}} & = \sqrt{\frac{\lambda_{\ell}}{C_{\ell}} \cdot \frac{C_{k}}{\lambda_{k}}} , \ \forall \ell = 1, \dots, k \end{array}$

II. Silent Errors

a.k.a. Silent Data Corruptions

Silent Data Corruptions

Characteristics

- Bit flip (Disk, RAM, Cache, Bus, ...)
- Problem: detection latency, wrong results

Number of errors proportional to area and circuit design

- 2002: **Unprotected address bus** ASCI Q at Los Alamos National Laboratory could not run more than one hour
- 2003: **No ECC** Virginia Tech 1,100 Apple Power Mac G5 supercomputer could not boot
- 2010: ECC protected Jaguar saw 350 bit-flips/min
- 2010: ECC protected Jaguar saw 1 double-bit error/day
- 2014: Titan: $\ensuremath{\mathsf{reported}}\xspace > 1$ Double Bit Error per week

Methods for Detecting Silent Errors

General-purpose approaches

Replication [Fiala et al. 2012] or triple modular redundancy and voting [Lyons and Vanderkulk 1962]

Application-specific approaches

- Algorithm-based fault tolerance (ABFT): checksums in dense matrices Limited to one error detection and/or correction in practice [Huang and Abraham 1984]
- Partial differential equations (PDE): use lower-order scheme as verification mechanism [Benson, Schmit and Schreiber 2014]
- > Preconditioned conjugate gradients (PCG): orthogonalization check every k iterations, re-orthogonalization if problem detected [Sao and Vuduc 2013, Chen 2013]

Data-analytics approaches

- Dynamic monitoring of HPC datasets based on physical laws (e.g., temperature limit, speed limit) and space or temporal proximity [Bautista-Gomez and Cappello 2014]
- > Time-series prediction, spatial multivariate interpolation [Di et al. 2014]

Coping with Fail-Stop and Silent Errors

What is the optimal checkpointing period?

Algorithmes d'ordonnancement et schémas de résilience pour les pannes et les erreurs silencieuses

Starting with base pattern

Adding verified memory checkpoints

Adding intermediate verifications between memory checkpoints

Segment w_i has m_i chunks

Putting everything together

. . .

Pattern	T^*	<i>n</i> *	m^*	H [*] (Pattern)
P_D	$\sqrt{\frac{V^*+C_M+C_D}{\lambda^s+\frac{\lambda f}{2}}}$	-	-	$2\sqrt{\left(\lambda^s+\frac{\lambda^f}{2}\right)(V^*+C_M+C_D)}$
$P_{DV}*$	$\sqrt{\frac{\frac{m^*V^*+C_M+C_D}{\frac{1}{2}\left(1+\frac{1}{m^*}\right)\lambda^s+\frac{\lambda f}{2}}}$	-	$\sqrt{\tfrac{\lambda^s}{\lambda^s+\lambda^f}}\cdot \tfrac{C_M+C_D}{V^*}$	$\sqrt{2(\lambda^s + \lambda^f)C_M + C_D} + \sqrt{2\lambda^s V^*}$
P_{DV}	$(m^*-1)V+V^*+C_M+C_D$		$2 - \frac{2}{r} + \sqrt{\frac{\lambda^s}{\lambda^s + \lambda^f}}$	$\sqrt{2(\lambda^s + \lambda^f)\left(V^* - \frac{2-r}{r}V + C_M + C_D\right)}$
	$\sqrt{\frac{1}{2} \left(1 + \frac{2-r}{(m^*-2)r+2}\right) \lambda^s + \frac{\lambda f}{2}}$	-	$\times \sqrt{\frac{2-r}{r} \left(\frac{V^* + C_M + C_D}{V} - \frac{2-r}{r}\right)}$	$+\sqrt{2\lambda^s \frac{2-r}{r}V}$
P_{DM}	$\sqrt{\frac{n^*(V^*+C_M)+C_D}{\frac{\lambda^s}{n^*}+\frac{\lambda f}{2}}}$	$\sqrt{\tfrac{2\lambda^s}{\lambda^f}}\cdot \tfrac{C_D}{V^*+C_M}$	-	$2\sqrt{\lambda^s(V^*+C_M)} + \sqrt{2\lambda^f C_D}$
P_{DMV*}	$\sqrt{\frac{n^{*}m^{*}V^{*}+n^{*}C_{M}+C_{D}}{\frac{1}{2}\left(1+\frac{1}{m^{*}}\right)\frac{\lambda^{s}}{n^{*}}+\frac{\lambda^{f}}{2}}}$	$\sqrt{\tfrac{\lambda^s}{\lambda^f}} \cdot \tfrac{C_D}{C_M}$	$\sqrt{\frac{C_M}{V^*}}$	$\sqrt{2\lambda^f C_D} + \sqrt{2\lambda^s C_M} + \sqrt{2\lambda^s V^*}$
P _{DMV}	$\sqrt{n^*(m^*-1)V+n^*(V^*+C_M)+C_D}$	$\sqrt{\lambda^s}$ C_D	$2 - \frac{2}{r}$	$\sqrt{2\lambda^f C_D} + \sqrt{2\lambda^s \left(V^* - \frac{2-r}{r}V + C_M\right)}$
	$\sqrt{\frac{1}{2} \left(1 + \frac{2-r}{(m^*-2)r+2} \right) \frac{\lambda^s}{n^*} + \frac{\lambda f}{2}}$	$\sqrt{\lambda^f} \cdot \frac{2-r}{V^* - \frac{2-r}{r}V + C_M}$	$+\sqrt{\frac{2-r}{r}\left(\frac{V^*+C_M}{V}-\frac{2-r}{r}\right)}$	$+\sqrt{2\lambda^s \frac{2-r}{r}V}$

Our contributions:

Resilience patterns:

- > Checkpointing for fail-stop errors
- > Verifications for silent errors
- > Multi-level checkpointing for both
- > Models and optimal solutions

Currently, I work on designing new detection techniques

Algorithm Based Fault Tolerance (ABFT)

Any application specific technique used to cope with faults.

Consider the blocked matrix multiplication $C = A \times B$.

Application Workflow

for
$$i = 1$$
 to $\lceil \frac{m}{b} \rceil$ do
for $j = 1$ to $\lceil \frac{m}{b} \rceil$ do
for $k = 1$ to $\lceil \frac{m}{b} \rceil$ do
 $C_{i,j} \leftarrow C_{i,j} + A_{i,k} \times B_{k,j}$

m matrix size

b block size

ABFT can be used to add per-block verification.

Algorithm Based Fault Tolerance (ABFT)

Any application specific technique used to cope with faults.

Consider the blocked matrix multiplication $C = A \times B$.

Application Workflow

for
$$i = 1$$
 to $\lceil \frac{m}{b} \rceil$ do
for $j = 1$ to $\lceil \frac{m}{b} \rceil$ do
for $k = 1$ to $\lceil \frac{m}{b} \rceil$ do
 $C_{i,j} \leftarrow C_{i,j} + A_{i,k} \times B_{k,j}$

> m matrix size

b block size

ABFT can be used to add per-block verification.

Let $e^T = [1, 1, \cdots, 1]$, we define

$$A^{c} := \begin{pmatrix} A \\ e^{T}A \end{pmatrix}, B^{r} := \begin{pmatrix} B & Be \end{pmatrix}, C^{f} := \begin{pmatrix} C & Ce \\ e^{T}C & e^{T}Ce \end{pmatrix}.$$

Where A^c is the column checksum matrix, B^r is the row checksum matrix and C^f is the full checksum matrix.

$$A^{c} \times B^{r} = \begin{pmatrix} A \\ e^{T}A \end{pmatrix} \times \begin{pmatrix} B & Be \end{pmatrix}$$
$$= \begin{pmatrix} AB & ABe \\ e^{T}AB & e^{T}ABe \end{pmatrix} = \begin{pmatrix} C & Ce \\ e^{T}C & e^{T}Ce \end{pmatrix} = C^{f}$$

Let $e^T = [1, 1, \cdots, 1] \text{, we define}$

$$A^{c} := \begin{pmatrix} A \\ e^{T}A \end{pmatrix}, B^{r} := \begin{pmatrix} B & Be \end{pmatrix}, C^{f} := \begin{pmatrix} C & Ce \\ e^{T}C & e^{T}Ce \end{pmatrix}.$$

Where A^c is the column checksum matrix, B^r is the row checksum matrix and C^f is the full checksum matrix.

$$\begin{aligned} A^{c} \times B^{r} &= \begin{pmatrix} A \\ e^{T}A \end{pmatrix} \times \begin{pmatrix} B & Be \end{pmatrix} \\ &= \begin{pmatrix} AB & ABe \\ e^{T}AB & e^{T}ABe \end{pmatrix} = \begin{pmatrix} C & Ce \\ e^{T}C & e^{T}Ce \end{pmatrix} = C^{f} \end{aligned}$$

$$A^{c} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 2 \\ 5 & 4 & 2 \end{pmatrix}, B^{r} = \begin{pmatrix} 1 & 1 & 1 & 3 \\ 2 & 0 & 3 & 5 \\ 0 & 2 & 2 & 4 \end{pmatrix},$$
$$C^{f} = A^{c} \times B^{r} = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 11 \\ 4 & 6 & 9 & 19 \\ 13 & 9 & 21 & 43 \end{pmatrix}$$

Everything seems fine. However, a silent error has occurred !

Indeed, recomputing the checksums we find that:

$$\begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 3 & + & 5 & = & 12 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 10 & + & 21 & = & 44 \end{pmatrix}$$
 Checksu

Checksums do not match !

$$A^{c} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 2 \\ 5 & 4 & 2 \end{pmatrix}, B^{r} = \begin{pmatrix} 1 & 1 & 1 & 3 \\ 2 & 0 & 3 & 5 \\ 0 & 2 & 2 & 4 \end{pmatrix},$$
$$C^{f} = A^{c} \times B^{r} = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 11 \\ 4 & 6 & 9 & 19 \\ 13 & 9 & 21 & 43 \end{pmatrix}$$

Everything seems fine. However, a silent error has occurred !

Indeed, recomputing the checksums we find that:

$$\begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 3 & + & 5 & = & 12 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 10 & + & 21 & = & 44 \end{pmatrix}$$
 Checksums

Algorithmes d'ordonnancement et schémas de résilience pour les pannes et les erreurs silencieuses

$$A^{c} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 2 \\ 5 & 4 & 2 \end{pmatrix}, B^{r} = \begin{pmatrix} 1 & 1 & 1 & 3 \\ 2 & 0 & 3 & 5 \\ 0 & 2 & 2 & 4 \end{pmatrix},$$
$$C^{f} = A^{c} \times B^{r} = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 11 \\ 4 & 6 & 9 & 19 \\ 13 & 9 & 21 & 43 \end{pmatrix}$$

Everything seems fine. However, a silent error has occurred !

Indeed, recomputing the checksums we find that:

$$5 + 1 + 7 = 13 \\ 4 + 3 + 5 = 12 \\ 4 + 6 + 9 = 19 \\ 13 + 10 + 21 - 44$$

Checksums do not match !

$$A^{c} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 2 \\ 5 & 4 & 2 \end{pmatrix}, B^{r} = \begin{pmatrix} 1 & 1 & 1 & 3 \\ 2 & 0 & 3 & 5 \\ 0 & 2 & 2 & 4 \end{pmatrix},$$
$$C^{f} = A^{c} \times B^{r} = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 11 \\ 4 & 6 & 9 & 19 \\ 13 & 9 & 21 & 43 \end{pmatrix}$$

Everything seems fine. However, a silent error has occurred ${\tt !}$

Indeed, recomputing the checksums we find that:

$$\begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 3 & + & 5 & = & 12 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 10 & + & 21 & = & 44 \end{pmatrix}$$
 Checksums do not match !

ABFT: Correction

$$C^{f} = A^{c} \times B^{r} = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 11 \\ 4 & 6 & 9 & 19 \\ 13 & 9 & 21 & 43 \end{pmatrix}, \begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 3 & + & 5 & = & 12 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 10 & + & 21 & = & 44 \end{pmatrix}$$

Both checksums are affected, giving out the location of the error. We solve:

$$4 + x + 5 = 11 1 + x + 6 = 9$$

$$x = 11 - 5 - 4 = 2 x = 9 - 6 - 1 = 2$$

Recomputing the checksums we find that:

$$\begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 2 & + & 5 & = & 11 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 9 & + & 21 & = & 43 \end{pmatrix}$$
 Checksums match!

$$C^{f} = A^{c} \times B^{r} = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 11 \\ 4 & 6 & 9 & 19 \\ 13 & 9 & 21 & 43 \end{pmatrix}, \begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 3 & + & 5 & = & 12 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 10 & + & 21 & = & 44 \end{pmatrix}$$

Both checksums are affected, giving out the location of the error. We solve:

$$4 + x + 5 = 11 1 + x + 6 = 9$$

$$x = 11 - 5 - 4 = 2 x = 9 - 6 - 1 = 2$$

Recomputing the checksums we find that:

 $\begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 2 & + & 5 & = & 11 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 9 & + & 21 & = & 43 \end{pmatrix}$ Checksums match!

$$C^{f} = A^{c} \times B^{r} = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 11 \\ 4 & 6 & 9 & 19 \\ 13 & 9 & 21 & 43 \end{pmatrix}, \begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 3 & + & 5 & = & 12 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 10 & + & 21 & = & 44 \end{pmatrix}$$

Both checksums are affected, giving out the location of the error. We solve:

$$4 + x + 5 = 11 1 + x + 6 = 9$$

x = 11 - 5 - 4 = 2 x = 9 - 6 - 1 = 2

Recomputing the checksums we find that:

$$\begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 2 & + & 5 & = & 11 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 9 & + & 21 & = & 43 \end{pmatrix}$$
 Checksums match!