ot

www.riot-0s.org
Emmanuel Baccelli

Crzziaa —
on behalf of the RIOT Community

10T Agenda

Why?
How?
What is RIOT?

» Solving loT technical challenge 1: constrained devices
* Solving loT technical challenge 2: interoperability

Current stand, in a nutshell

CRIOT Agenda
e Why?

e How?
e What is RIOT?

» Solving loT technical challenge 1: constrained devices
* Solving loT technical challenge 2: interoperability

e Current stand, in a nutshell

Software Platforms Are Crucial

e Recent calls for OS and data "’sovereignty”’

Snowden political scandal
—> strategic & privacy-related incentives

Android generates billions of dollars
-=> more obvious business incentives

The Internet of Things (loT)
is future Internet’s extremity

%

@;.

Drawback: extreme challenge for privacy “‘*"“

‘5‘@ %\%1\%

Software Platforms for loT?

* Great expectations for loT, but...

...no standard platform yet, to program most loT devices!

Memory ~ 500 MB e.g. like Arduino
e !ii. “‘ (bUt not like
o Rasberry Pi)

L =)

Memory ~ 16 KB
Memory~ 1 GB x|

|j___|i D l ‘ Linux Android

Memory > 4GB Memory ~ 2 GB &
L « &2]
D Memory ~ 8 KB Memory ~ 100 KB
L Moore’s law

Memory > 4GB
’
Ny
w8

Internet of Things

Software Platforms for loT?

Qualitative requirements for a software platform for loT:

v’ long-term loT SoftWare robustness & security

v’ trust, transparency & protection of loT users’ privacy

v’ fasterinnovation by spreading loT software dev. costs

v'less'garbage with less loT device lock-down

CRIOT Agenda

* Why?

e What is RIOT?

* Solving loT technical challenge 1: constrained devices
* Solving loT technical challenge 2: interoperability

e Current stand, in a nutshell

How can we achieve our goals?

* Experience (e.g. with Linux) shows we are
likely to succeed with a platform that is:

Ruor

0T Principles

« Community gathering contributors worldwide
— People from industry, academia, hobbyists/makers

— Community self-organizes, follows open processes

* Large-scale distributed source code management

github

SOCIAL CODING

— Geopolitically neutral

[) ‘\
P ‘\ “ ////// 4 ° °
L 1.
rinciples
‘u\ //‘ ’/‘ A\
\\ :’ y \ J

* Code of the platform is free & open source

— core distributed with non-viral copyleft license

LGPL

Free Software

(favors less forks = more coherent code + community)

= Indirect business models

(like business with Linux)

CRIOT Agenda

* Why?
e How?

» Solving loT technical challenge 1: constrained devices
* Solving loT technical challenge 2: interoperability

e Current stand, in a nutshell

RIOT : an OS that fits loT devices

Memory ~ 16kB

Memory ~ 8kB

loT

Memory ~ 100kB

RIOT : an OS that fits l1oT devices

e RIOT is the combination of:

1 needed [MEMOFRIERErBYEFfiCiEACY to fit IoT devices

 functionalities of afull-fledged operating system

full-featured, extensible network stacks

end-to-end IPv6 (e.g. from loT device to the cloud)

advanced, spontaneous wireless networking
consistent APl across 32-bit, 16-bit, 8-bit hardware

CRIOT Agenda

* Why?
e How?

e What is RIOT?
-+ SolvingloT technical challenge 1: constrained devices

* Solving loT technical challenge 2: interoperability

e Current stand, in a nutshell

loT Challenge 1: Constrained Devices

How RIOT solves Challenge 1

Micro-kernel architecture (contrary to Linux)

- minimal requirements around 1kB RAM

Tickless scheduler - ERErgYEfficiency’

Deterministic O(1) scheduler =2 (real-time

Low latency interrupt handler - [FEaEtVity

How RIOT solves Challenge 1

 Same powerful APl on 8-bit, 16-bit, 32-bit
-> preemptive multithreading, IPC...

ARDUINO

* Modular structure, adaptive to diverse hardware

> support for 50+ different loT boards/devices and counting

How RIOT solves Challenge 1

 Efficient HAL: minimized hardware-dependent code

Zoom on hardware-dependent code

Applications

Low-Power
Network Stack

Red: must have

Pin Configuration Power Management* Newlib Syscalls
Green: must have

Board Initialization Startup Code Linkerscript but shared by all

Task switching and ports with same
Clock Iniialization Stack handiing Interrupt Handling architecture

Grey: optional for
initial porting

(e.g., IEEE802.15.4,
BLE, 6LoOWPAN,
CoAP, RPL)

Device Drivers
(e.g., network interfaces, sensors)

Supporting Libraries
(e.g., crypto, FS, data structures)

(e.g., scheduler, tasks, locks)

[e S

Hardware Abstraction Layer

(e.g., GPIO, UART, SPI, 12C)

Hardware

Low-level Driver Layer

Task Switching, Stack Handling, Interrupt Handling:
done for ARM Cortex M3, M4 and MO is on the way

(GPIO, UART, SPI, Timers: done for STM, Atmel, NXP...)

Well-known tools are usable!

 Compliance with common system standards

v POSIX sockets, pthreads
v’ standard C, C++ application coding

> Much shorter development life-cycles

v Run & debug as native process in Linux

v’ Use of well known debug tools enabled

%l GDB /5] T1I(} WIRESHARK

Debugger

CRIOT Agenda

* Why?
e How?
e What is RIOT?

* Solving loT technical challenge 1: constrained devices

e Current stand, in a nutshell

loT Challenge 2: Interoperability
» System-levelinteroperability

— Hardware-independentloT software
— Usability of third-party, well-known tools

* Network level interoperability
— End-to-end connectivity per default
— Device-to-device connectivity

loT Interoperability Challenge:
The loT today looks mostly like this

loT Interoperability Challenge:
The loT we want looks more like that

-

another * another

router \\// \ //\\J/ router

The loT we want is... the Internet!

Internet Interoperability:
Based on Open Standards

Internet Interoperability:
Accelerated with Open Source

NMy

NECINX

OpenWist

PostgreSQL

? OpenSSL

Usual solutions for Interoperability:
Challenged by loT...

.. because of resource constrains on loT devices
= Memory, CPU, energy

.. because of low-power communication characteristics
= |ossy/ duty cycles

= Super-small frames

= Spontaneouswireless architecture

= Adapted standard loT protocols needed

Standard loT protocols? On the way!
Work in progress at IETF, IEEE, W3C, OMA

New specs for radio technologies and-

— Low-power
— |EEE 802.15.4, Z-Wave, BLE, LoRa (and IEEE 802.11)

New specs for_ protocols
— FittingloT requirements and interoperable with IP _

— 6TiSCH, 6L0oWPAN, RPL, OLSRv2, AODVv2 _
~ Moreto come... [wve |[icwe]
New specs for_ protocols [olowean |

— FittingloT requirements and interoperable with web
— CoAP, LwM2M, CBOR | eeE80215.4 MAC |
— More tocome... Radio Transmission

— Content-centricnetworkingforloT
— Moretocome...

How RIOT solves Challenge 2

CRIUT

_ ' Embedded IP Stack Traditional IP Stack Content-Centric Stack
Applications

Application Layer ‘ APPLICATION ‘

B e

IEEE 802.15.4 MAC | Link Layer
IEEE 802.3 or IEEE 802.11 IEEE 802.3, IEEE 802.15.4
| Radio Transmission | Physical Layer

Hardware Platform I fully supported partially supported

v' 6LOWPAN stack, supporting loT wireless tech.
v’ Standard IPv6 stack

v’ BSD-like ports for third-party modules/stacks:
" OpenWSN, CCN-lite, Emb6, IwIP, tinyDTLS...

How RIOT solves Challenge 2

= Network stack ultra-flexibility and modularity

Application Layer
Socket Wrapper
$

Application Layer

Socket API
ocke Network IPC

Transport Layer

Transport Layer
Network IPC

Network Layer Network Layer

Network IPC
Link Layer .
Link Layer

Network IPC

Medium Access Control
3 Driver Interface

Network Interface Controller

Traditional stack RIOT stack (GNRC)

Medium Access Control

T
B
-
| e
T W

I Driver Interface

Network Interface Controller

CRIOT Agenda

* Why?
e How?
e What is RIOT?

» Solving loT technical challenge 1: constrained devices
* Solving loT technical challenge 2: interoperability

RIOT in a nutshell

Free, open-source plaftorm for portable loT software

RIOT offers a platform
functionally equivalent
to Linux, based on:

open-source,

community-driven dev.

Closed- & Open-source loT Applications

CoAP, LWM2M...

RPL, UDP ...
IPv6, 6LOWPAN ...

Other network
stacks

Micro
Kernel
Open-Source Drivers [Closed-Source Drivers

Peripherals (including network interfaces)

Lowpower MCU + radio or wired communications

B ot

B Third-party software
Hardware

RIOT can do more, so RIOT can do less

* Arduino scripts can run as-is on top of RIOT
* mbed applications could run on top of RIOT
e Contiki can runin a single RIOT thread

© O mbed

ARDUINO y

RIOT Roots & Evolution

Founding institutions

Ancestors of RIOT kernel developedin
research projects (FireKernel, uKleos).

INVENTORS FOR THE DIGITAL WORLD

Branding of RIOT started, source code

moved to Github, major development of Hochschule fiir Angewandte
Wissenschaften Hamburg
the networkstack & the OS as such. Hamburg University of Applied Sciences

of the code-base

Some supporters/users

... and dozens of independent developers around the world!

News: https://twitter.com/RIOT_OS
For cooperation questions: riot@riot-os.org
For developer questions: devel@riot-os.org
Support & discussions on IRC: irc.freenode.org #riot-os

10T

Some technical next steps for RIOT

* System
— Generic sensor/actuatorinterface (SAUL)
— Over the air (OTA) binary updates
— Certification
— Generic optimized LPM management
— Distributed Cl system

* Network stack
— MAC : more link layer technologies support
— More lightweight network security protocols
— More application layer protocols
— More integration or new ports of other stacks

Other loT Software platforms?
No great fit yet.

Some “cloud” solution? OK, but not sufficient.
Arduino? Hardware specific, not an OS.
mbed? Hardware- and ARM-centric, server-centric.
Android? Big memory needs, Google-centric.
Contiki? Fits memory, but old & exotic AP,
Zephyr? No community, Intel-product for now...

(Whatever on RasberryPi? Target is much smaller.)

