
Prove & Run 1

77, avenue Niel, 75017 Paris, France

contact@provenrun.com

Proven Security for the Internet of Things (IoT)

Prove & Run 2

Prove & Run’s mission

Enable the Internet of Tomorrow =
Internet of Things + Security

Without	security:	
•  Impossible	to	deploy	a	network	of	connected	devices	
•  Impossible	to	scale	the	Internet	of	Things	
•  Impossible	to	trust	a	system	to	keep	data	private	&	confiden<al	
	

Connected	
Cars			Industry	4.0			

SmartHome			SmartGrid			

SmartCity			

eHealth			

Prove & Run 3

July 2015 Miller & Valasek’s Attack

•  Malicious connection to
infotainment through
UconnectTM

•  Malicious firmware update
•  Sending fake /

impersonating commands
(commands for the air
conditioning, for the engine,
etc.)

Wired Magazine 7/21/2015

Prove & Run 4

•  Hackers can use
communications
with the external
world to exploit
errors in:

•  Applicative layers,
•  Protocols,
•  Configuration,
•  Personalization,
•  Firmware update,
•  Secure Boot,
•  OS/Kernel,
•  ...

Applicative layers
Configuration

Protocols

Secure Boot
Firmware Update

Car Hacking – Jeep example
Any	unit	with	external	

communica<on		

Prove & Run 5

Security is as strong as its weakest link
•  Security chain:

•  Cryptographic algorithms
•  Cryptographic protocols
•  Technology and know-how to resist physical attacks

•  Ex: Smartcards
•  Technology and know-how to resist logical attacks

•  Hackers will exploit bugs, weaknesses and errors that exist in thousands
in the software of embedded systems, in particular Operating Systems.

•  Existing OSs such as Android, Linux and large RTOSs cannot be
technically secured and used as such:
•  1000’s of bugs officially reported / year

Prove & Run 6

Security is changing …

•  Traditional: small TCB with few peripherals and
small attack surface

•  Secure element is usually the right solution

•  Resistance to physical attack is the biggest challenge

•  More peripherals and thus larger TCB and larger
attack surface (typically mobile security)

•  Use a small secure OS kernel (TEE),
•  Resistance to physical attack can be addressed with secure elements

or similar embedded IP,

•  Resistance to logical attack becomes the biggest challenge

Prove & Run 7

Security: the IoT disruption

•  IoT case: Still more peripherals, better business
model for hackers, larger damages at stake, with
large TCB and large attack surface, in many cases
remote device is unattended, etc.

•  Logical and Physical TCB are to be distinguished

•  Resistance to physical attack can still be addressed with secure
elements or similar embedded IP

•  The secure OS kernel (such as the TEE), and all other complex parts
of the TCB need to be formally verified

•  Resistance to logical attack is achieved using a trusted and reliable
security rationale (attacks exploit error in the security rationale)

Prove & Run 8

Addressing the New Challenge
•  Use of a state-of-the-art security methodology to clearly identify the

security issues of the targeted system
•  For example the Common Criteria methodology
•  The rationale of why security is achieved needs to be provided in an

auditable format:
•  Perform a Risk Analysis
•  Confidence in rationale is key
•  Identify the “Trusted Computing Base” (TCB)
•  TCB should be small enough to be trustable
•  Large OSs such as Linux or Android when used should not be part of the TCB

•  For the OS and kernels that are included in the TCB;
•  Apply formal methods to the complex part of the TCB (this includes kernels)
•  Ability to get as close as possible to “Zero-Bug”
•  Ability to demonstrate security (proof and certification)

•  Reach the highest levels of security at cost/skills requirements
compatible with value chain constraints
•  Reuse COTS to control the cost of developing a secure product

Prove & Run 9

Prove & Run answer’s to the challenge

•  Two critical secure COTS (ready for integration) that are
needed to host “security sensitive” applications and to
build layered security perimeters:

•  ProvenCore: Microkernel proven for security to secure gateways and
connected devices (Industrial Things), smartphones, tablets, etc.

•  Execution of security-critical applications
•  Secure protection of the “Smart and Safe world” (Existing OS)
•  Provided together with its Secure Boot

•  ProvenVisor: Proven secure hypervisor for mobile devices and IoT
virtualization solutions

•  Secure isolation of existing OSs and legacy SW stack

•  Built with ProvenTools: A patented software development tool that
makes it possible to formally prove the correctness of the software

•  Be as close as possible to “zero-bug”

Prove & Run 10

Remote attacks exploit entry points

Rich	OS	based	system	(Linux,	
Windows,	Android,	…)	

SB	 FU	 FW	

AUT	

Trusted Computing
Base

SS	

CL	

SB: Secure Boot
FU: Firmware Update
FW: Firewall
SS: Secure Storage
CL: Crypto Library
AUT: Authentication

Prove & Run 11

TrustZone ARM Cortex A – High Level Principles

	
	
	
	
	
	
	

																Normal	World																														Secure	World	

TrustZoneTM Monitor

I/O devices can be configured to be
controlled by Secure World

Prove & Run 12

TrustZone ARM Cortex A – High Level Principles

	
	
	
	
	
	
	

																Normal	World																														Secure	World	

Hypervisor	Mode	

TrustZoneTM Monitor

Kernel	Mode	

User	Mode	Mode	

Kernel	Mode	

User	Mode	

I/O devices can be configured to be
controlled by Secure World

Monitor	Mode	

Prove & Run 13

TrustZone ARM Cortex A – High Level Principles

	
	
	
	
	
	
	

																Normal	World																														Secure	World	

Hypervisor	Mode	

TrustZoneTM Monitor

Kernel	Mode	

User	Mode	Mode	

Kernel	Mode	

User	Mode	

Rich	OS	(Linux,	Windows	..)	

User	Applica<ons	

I/O devices can be configured to be
controlled by Secure World

Monitor	Mode	

Prove & Run 14

TrustZone ARM Cortex A – High Level Principles

	
	
	
	
	
	
	

																Normal	World																														Secure	World	

Hypervisor	Mode	

TrustZoneTM Monitor

Kernel	Mode	

User	Mode	Mode	 User	Mode	

Rich	OS	(Linux,	Windows	..)	

User	Applica<ons	

ProvenCore	

Security	Applica<ons	

I/O devices can be configured to be
controlled by Secure World

Monitor	Code	

Formal proof
neeeded

Prove & Run 15

Securing an Entry Point on ARM Cortex-A

SS	

TrustZoneTM	Secure	World	

FU	

ProvenCore

FW	 AUT	

Cortex-A with TrustZoneTM

Secure Boot

Formal proof
neeeded

Rich	OS	based	system	(Linux,	
Windows,	Android,	…)	

Security rationale

Prove & Run 16

Rich	OS	based	system	(Linux,	
QNX,	Android,	…)	

ProvenCore

TrustZoneTM	Secure	World	

Cortex A

Looking more closely to the Secure Remote
Firmware Update

Formal proof
neeeded

Security Rational

Firmware	
Update	

Prepara6on	

Firmware	
Update	/	
Boot	

Secure Boot

Prove & Run 17

Rich	OS	based	system	(Linux,	
QNX,	Android,	…)	

ProvenCore

Cortex A

Looking more closely to the Secure Remote
Firmware Update

Formal proof
neeeded

Security Rational

Firmware	
Update	

Prepara6on	

Firm
w
are	

U
pdate	/	Boot	

Secure Boot

TrustZoneTM	Secure	World	

Prove & Run 18

Linux	

ProvenCore

TrustZoneTM	Secure	World	

FW1	

Cortex A

Looking more closely to the TCP/IP Firewall

Formal proof
neeeded

Security Rational

DV	

DV	

TCP/IP	
Stack	

VPN/	
TCB	

DVP	

TLS/	
NTCB	

TLS/
TCB	VPN/	

NTCB	

Secure Boot

Prove & Run 19

ARM next-generation microcontrollers (Cortex-M v8)

Microcontroller	OS	

FU	

ProvenCore

TrustZoneTM	Secure	World	

FW	 AM	 AUT	

Cortex-M – v8
Trusted Computing

Base

Security rationale

Secure Boot

Prove & Run 20

Using a Hypervisor

	
	
	
	
	
	
	

	 	 	 	 																
ProvenCore

Cortex-A

Linux	Linux	

A1	 A2	 A3	 A4	

Linux	

A5	 FW	 FU	 AM	 Auth	

Linux	

A6	

ProvenVisor
Trusted Computing

Base

Prove & Run 21

Using an Hypervisor

•  An hypervisor may be used to virtualize
hardware or create virtual hardware isolation

•  Either because you want to replace two or more processors by a single
one

•  Or because you want to have more virtual chips to isolate software
stacks.

•  It is thus important to do it securely and this is why
we need a really secure hypervisor such as
ProvenVisor

Prove & Run 22

But a secure OS kernel is required
•  You need to have security applications to do various tasks:

•  Filtering various communications channels, Firmware Update (FOTA),
Using and managing keys, Administrating configurations and security,
Logging events, possibly Performing various analysis and attack
responses, etc.

•  You need to place such secure applications on a trusted
and robust ground:
•  Not on a large untrusted OS such as Linux (even sitting on a hypervisor, as

it will have to communicate and interact with the peripherals and is thus
vulnerable)

•  Not on hardware,
•  Not on a hypervisor (which would provide by definition a similar hardware

abstraction)

ProvenCore

FW	 FOTA	 Admin	

Hw Platform

Prove & Run 23

Conclusion

•  With a secure boot and ProvenCore you can cope
with a very large set of security issues:

•  ProvenCore: A microkernel proven for security
•  Execution of security critical applications (firewalling, FOTA, etc.)

•  Secure protection of the “Smart and Safe World” (Existing OS)

•  For more sophisticated cases, you may need to
have a secure hypervisor

•  ProvenVisor: A proven secure hypervisor
•  Secure isolation of existing OS and legacy SW stack

•  ProvenCore and ProvenVisor are built with ProvenTools:
•  To be as close as possible to “zero-bug”

